Chassis and Bodyshell

To attain the performance goals set for the LaFerrari, Ferrari drew not only on the Scuderia’s F1 experience in the choice of materials, design and engineering, but brought in the expertise of Rory Byrne, the legendary F1 designer who was responsible for no fewer than 11 of Ferrari’s World Championship-winning cars. A working group of GT and F1 engineers designed a chassis which would provide maximum rigidity and minimum weight, despite the constraints imposed by incorporating the hybrid system. During the engineering phase a number of functions were integrated within the chassis design to reduce weight. One example is the seat structure which is part of the chassis, lowering weight and ensuring a more compact architecture and a lower centre of gravity.These uncompromising solutions guaranteed a significant improvement in performance characteristics over the chassis of the Enzo Ferrari, with torsional rigidity increased by 27 per cent and beam stiffness up by 22 per cent, while weight has dropped by 20 per cent. The chassis is built entirely in-house in Maranello alongside the F1 single-seaters using the Scuderia’s materials and production processes. Just like in F1, pre-preg composites of aeronautical derivation are employed: four different types of carbon-fibre are used, because each area of the body-in-black is engineered to guarantee the functional requirements it has to meet.

F138 - Knowledge transfer from F1 to GT

Most of the tub is made of T800 – a first in the automotive sector – with both fabric and unidirectional tape being strategically hand laid up to ensure that the right material is in the right place. T1000 unidirectional tape and fabric is used in areas that are important for passenger compartment protection, such as the doors and the sills. Its high energy absorption characteristics pass the strictest side-impact legislation norms. Structural elements of the body are made using M46J unidirectional tape and fabric which is extremely rigid, but lightweight. For the underbody, carbon-fibre is combined with another specialist composite material, Kevlar®, which is used to protect the carbon structure from road debris damage.The multi-material approach was adopted for the entire body-in-black in order to reduce the number of components to the benefit of lower weight. An example is the one-piece rear section, which is a single piece hand laid-up using a combination of M46J and T800 carbon-fibres to obtain a very lightweight, yet rigid structure. The carbon-fibre is cured in the same autoclaves used for the F1 chassis in two phases between 130°and 150° C using vacuum bags to remove any voids in the laminate.

  • High impact and penetration resistance
  • Advanced carbon-fibre technology
  • Four different types of carbon-fibre
  • The chassis is built in-house
  • Four different types of carbon-fibre